
Journal of Statistical Physics, Vol. 74, Nos. 3/4, 1994 

Brownian Dynamics Simulations of Colloidal 
Hard Spheres. Effects of Sample 
Dimensionality on Self-Diffusion 

W .  Schaert l  ] and H .  S i l l escu  ~ 

Received April 27, 1993," final September 21, 1993 

The self-diffusion coefficients of colloidal hard spheres were determined by 
Brownian dynamics (BD) computer simulations using a new efficient algorithm 
for treatment of the hard-sphere interactions. Calculations were done on an 
Apple PC type Macllcx and on a MicroVAX 3000, considering samples in two 
and three dimensions at varying particle concentrations. Our results in three 
dimensions are compared with experimental results from our own group which 
were obtained by forced Rayleigh scattering (FRS), and with numerical results 
from a dynamical Monte Carlo simulation by Cichocki and Hinsen. Good 
agreement with the latter was found for particle volume fractions up to 0.40. 
Differences in the dynamical behavior of our numerically treated 2D and 3D 
samples are discussed using a simple geometrical model to enable comparison 
of particle concentrations in samples with different dimensionality. 
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1. INTRODUCTION 

C o l l o i d a l  spheres  have  rega ined  m u c h  interes t  in the last few years. (l-s) 

M o d e r n  m e t h o d s  of  mate r ia l  analysis  such as d y n a m i c  l ight  sca t te r ing  (9'1~ 

or  v i d e o m i c r o s c o p y  (8'H'~2) c o m b i n e d  with  t echn iques  for sample  p repa ra -  

t ion  which  were  ma in ly  inf luenced by p o l y m e r  chemis t ry  (~3-~5) p rov ide  

scientists  wi th  a lmos t  ideal  m o d e l  systems,  for example ,  m o n o d i s p e r s e  

co l lo ida l  ha rd  spheres.  Suspens ions  of  these mate r ia l s  in s o m e  ways show 

the s a m e  charac ter i s t ics  as a t o m s  or  molecu les  bu t  on  m u c h  larger  t ime 

and  d i s tance  scales, which  m e a n s  eas ier  access to expe r imen ta l  results. (~) 
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Dynamical behavior of colloidal suspensions can be studied by various 
methods, for example, photon-correlation spectroscopy, tl'z'16'17~ forced- 
Rayleigh scattering, c~7~ or digital image processing of images taken either 
from an ultramicroscope ts" TM ~2~ or by fluorescence microscopy.~z~ 
Nevertheless, since the samples which are currently available are only 
nearly monodisperse and the interactions between the colloidal particles 
and their influence on dynamics and structure are not yet fully understood, 
computer simulations also provide a useful tool to gain more detailed 
information concerning this matter, t18-2~ One can also study idealized 
systems by numerical simulations which are not available experimentally, 
such as true two-dimensional samples, t12~ to obtain information about the 
specific effect of certain parameters on structure and dynamics of the 
system of interest. 

There are two different approaches to properties of atomic or 
molecular systems by computer simulations: the Monte Carlo method, cz3~ 
where physical quantities of the system are calculated from ensemble 
averages by calculation of many microstates of the system with the same 
particle number, volume, and energy, and the molecular dynamics (MD) 
technique, cz3~ which is based on the numerical solution of Newton's equa- 
tions of motion. The MD calculations give a direct access to single-particle 
trajectories, which are our main interest. For simulations of colloidal 
suspensions additional terms have to be added which consider the 
interaction between the suspended particles and the surrounding molecules 
of the solvent. This leads to the so-called Brownian dynamics (BD) ~24~ 
calculations of colloidal systems, which are analogous to the MD 
simulations of molecular systems. 

In this paper we are interested in colloidal hard-sphere suspensions. 
These systems have been the focus of many recent theoretical investigations 
and computer simulations, tl8"25 311 The interaction pair potential of hard- 
sphere systems is not numerically integrable, so the Langevin equation for 
Brownian motion cannot be solved for such samples. Correspondingly, it is 
not possible to apply the standard BD algorithm tl,2,4~ as used for Yukawa 
systems.l~9 221 An alternative method for numerical treatment of hard-core 
interactions in colloidal suspensions was suggested by Cichocki and 
Hinsen, ~18~ who used a quasi Monte Carlo technique for Brownian motion 
in configuration space. In their algorithm, one sphere is chosen at random 
and displaced in the random direction by a distance which corresponds to 
N times the free Brownian motion during the nominal time step of the 
calculation cycle, N being the total number of particles in the sample. If 
particle overlap is found after this time step, the new configuration is 
ignored and the old one is stored, otherwise the new configuration is kept. 
The self-diffusion coefficients obtained by this procedure are systematically 
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too small for finite time steps. Reasonably accurate diffusion coefficients for 
sphere volume fractions up to ~o = 0.5 were obtained by extrapolation from 
runs at different decreasing time steps. However, at high concentrations the 
mean nearest-neighbor spacings are so small that very small time steps, 
corresponding to very small steps of Brownian motion during one calcula- 
tion period, are necessary to get suitable results. Thus, much computer 
time is required, and typically 5 hr on a CRAY XM-P 48 was needed for 
one ~p value in the simulation of Cichocki and Hinsen. 

In the present paper, we have developed a BD algorithm where the 
coupling of particle motion through finite-range interaction potentials is 
replaced by an appropriate procedure which accounts for hard-sphere colli- 
sions. Hydrodynamic interaction (see below) is neglected as was done in 
the simulation of Cichocki and Hinsen. During the time between collisions 
each particle moves by free Brownian motion independent of all other 
particles of the sample. We can therefore move every particle during one 
calculation cycle which defines one time step. Any particle overlap which 
occurs at the end of this time step is removed by a symmetric shift (Fig. 1) 
described in more detail in the following section. It turns out that the self- 
diffusion coefficients obtained by this procedure are systematically too large 
for finite time steps and higher concentrations. However, we can show that 
the convergence is by far superior to that of the previous Monte Carlo pro- 
cedure ~g) if judged by the computer time needed for achieving a particular 
accuracy. Comparable results are obtained with a PC and a MicroVAX, 
which both are more than 500 times slower than the CRAY used by 
Cichocki and Hinsen. c~81 The main purpose of our work is to find efficient 

Fig. 1. Principle of the treatment of hard-core interactions during one calculation cycle of 
our BD algorithm. Accidental particle overlap is corrected by the symmetric shift of the 
interfering particles up to their touching distance. 
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ways to computer simulations of current experiments with hard-sphere 
colloids in concentrated solutions. We also present a practicable method 
for comparing the concentration dependence of diffusion in two and three 
dimensions. Hydrodynamic interactions are treated approximately in a 
manner proposed by Medina-Noyola. 151 

2. BASIC  C O N C E P T S  

2.1. In te rac t ions  

In the usual colloid suspensions the mass of the diffusing particles 
is much larger than that of the surrounding liquid molecules. Corre- 
spondingly, the time scales relevant in standard BD simulations are much 
larger than the Brownian relaxation time zB = m/6nrloR, ell where R is the 
hydrodynamic radius, m the mass of the colloidal particle, and ~/o the 
solvent viscosity. For equal liquid and particle densities, R = 0.5 #m, and 
r/o = 1 0  - 3  Pas, the parameters of our simulations yield ~B = 5.5 X 10 -s sec. 
Therefore, we can use the Einstein relation 

(r( t)  ~) = 2dDot 

Do = k T/61trloR 
(1) 

for calculating the mean square displacement for free Brownian motion. 
In Eq. (1), D O is the diffusion coefficient, d the dimensionality, ~tnd k the 
Boltzmann constant. At finite concentrations, diffusion, is slowed down by 
hydrodynamic interactions between the moving colloid spheres and by 
hard collisions. Since hydrodynamic interactions propagate on the time 
scale of viscous shear waves, the corresponding time scale rn  is very small 
in comparison with the smallest time step of BD simulations; at moderate 
concentrations TH~TB. ~ This justifies the assumption that only the 
short-time diffusion coefficient De is affected by hydrodynamic interactions 
in a first approximation. Following Medina-Noyola, tS) we incorporate 
hydrodynamic interactions in our BD simulations by using D e instead of 
Do in determining the random step of Brownian motion or, alternatively, 
by factorizing the results with Ds/D o. For De, we use values obtained by 
Beenaker and Mazur t4) in a treatment that includes hydrodynamic inter- 
actions in the short-time limit. This crude method allows for comparison 
with experimental diffusion coefficients, although it is probably not justified 
at very high concentrations. However, an explicit inclusion of 
hydrodynamic interactions in our calculations appears hopeless at the pre- 
sent state of the theory, r also considering the fact that our computer 
power is much too insufficient. 
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Since the interparticle potential is zero between the hard collisions our 
simulation is that for free Brownian motion of particles having the diffusion 
coefficient Ds except for the algorithm that accounts for the collisions. 

2.2. Algorithm 

In our simulations we start from some initial particle configuration, 
either purely random or a simple cubic lattice, and proceed as follows in 
each of the successive time steps z: 

1. Each particle is moved by the distance ( 2 D : )  m in one of the ran- 
domly chosen directions along the Cartesian axes ( + x ,  _+y, _z) .  

2. Any particle overlap detected after the move is corrected by 
pairwise shifting of the interfering particles up to their touching 
distances (see Fig. 1 ). 

Although this shift may cause secondary overlaps with other particles in 
concentrated suspensions, this is ignored, and the next time step z proceeds 
from the particle configuration obtained after the shifts. Since this proce- 
dure differs considerably from hard collisions in a real system, our algo- 
rithm cannot provide reasonable results unless the time step z is chosen 
sufficiently small and the corresponding overlap distance very much smaller 
than the particle size. The errors introduced cancel in part on a coarse- 
grained time scale A t >  103r; however, they become severe at very high 
concentrations. A detailed error analysis is given in the next section. 

The following conditions were chosen in the numerical simulations: 
the sphere radius was chosen as R=0.5/~m,  which corresponds to 
Do=4 .4  • 10 -~3 m 2 s e c  - 1  for free Brownian motion in water at 20~ In 
the two-dimensional (d=  2) runs we chose a box of 32 x 16 x l/~m 3 with 
periodic boundary conditions c23) in the x and y (not z) directions. The con- 
centration was changed by varying the number of spheres from 48 to 528 
in steps of 4 8 .  (12) In the d =  3 simulations we kept the particle number at 
73 = 343 (83= 512 for one run with r = 0.5 msec), and changed the concen- 
tration by varying the size of the box, which was a cube with periodic 
boundary conditions in all three dimensions. For direct comparison of 
d = 2 and d = 3 particle dynamics we also performed d = 2 calculations with 
constant particle number 343, adjusting the concentrations (as in d =  3) by 
varying the size of the simulation area. As mentioned above, the initial 
particle configurations were chosen as a simple cubic lattice or some 
random distribution. The time steps z for different runs were varied 
between 50/~sec and 10 msec, where the latter is still small in comparison 
with the "structural relaxation time ''(~) zR=R2/Do=O.6sec. After an 
equilibration time of 5 see all particle positions were stored as a function of 
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the diffusion time t=nxz  at certain time intervals At, say, 0.1 sec. From 
these data the time-dependent self-diffusion coefficient D(t) was determined 
from the mean square displacements 

( Jr(/' + t) - r ( / ' ) ]  2 ),..N = 2dO(t)t (2) 

which corresponds to Eq. (I). 

2.3. Error Analysis of  the A lgor i thm 

In this section we only discuss d = 3 results, since the convergence and 
also the characteristic errors of our algorithm do not depend on the dimen- 
sionality of the considered sample. We also had tested the role of our initial 
configuration and found that our results were not affected if the equilibra- 
tion time was chosen large enough (>2sec) .  We also assured that our 
particle number was large enough by doing one run with more than 343 
particles, say, 512, which did not change our results. 

To give a detailed analysis of our algorithm we have determined the 
following quantities for runs with N =  343 at different particle concentra- 
tions and different time steps z: the reduced short-time diffusion coefficient, 
D(r)/Do, the number of pairwise particle overlaps before, ov(z ), and 
after, ov(r), correction, the mean overlapping distance after correction, d(z) 
[/~m], and the number of overlapping particles before and after correction, 
N(r_ ) and N(r). Every overlapping particle is counted only once. N(r_ ) is 
a measure of interparticle interactions, i.e., hard collisions, during our time 
step. We also calculated the long-time diffusion coefficient, D(t = 5 sec)/Do, 
in order to investigate the convergence of our algorithm with decreasing 
time step r especially at higher concentrations. Some of our results are 
summarized in Tables I and II: 

The short-time diffusion coefficients D(~)/Do shown in Table I repre- 
sent the reduction caused by the overlap correction which pushes the over- 
lapping particles partly back into the direction they had come from by free 
Brownian motion. Without corrections, D(z_ )/Do = 1, since hydrodynamic 
interaction is neglected. The reduction of D(r) is partly canceled, since 
D(t) is increased for t > ~ by the effect of the secondary overlaps, ov(~), as 
discussed below. The efficiency of our hard collision algorithm can be 
estimated from the reduction of the number of overlaps from ov(z ) to 
ov(z) [or that of the overlapping particles from N(z_) to N(z)] and the 
average overlapping distance d(z) after the correction. Apparently, 
secondary overlaps play an important role at high concentrations and too 
large time steps ~. 

In Table II we present some long-time results D(t = 5 sec) for various 
particle volume fractions and time steps -c decreasing from 10 to 0.1 msec. 
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Table I. Results for Characteristic Quantities Useful 
for a Detailed Discussion of the Errors of Our Algorithm 

693 

r, msec ~o D(~)/D o ov(~_) ov(r) N(z_ ) N(r) d(r),/am q~n 

10 0.20 0.9510 51.7 32.4 92.4 56.9 0.0044 0.200 
0.30 0.9056 101.5 68.1 161.7 107.4 0.0080 0.298 
0.40 0.8409 180.6 133.8 239.0 180.5 0.0129 0.392 
0.50 0.7571 309.4 255.9 305.5 268.3 0.0187 0.479 

1 0.20 0.9640 37.5 22.5 69.2 40.6 0.0026 0.200 
0.30 0.9286 74.6 47.3 126.2 79.0 0.0044 0.299 
0.40 0.8708 139.5 97.8 202.8 144.3 0.0073 0.397 
0.50 0.7853 249.1 192.8 280.4 230.9 0.0116 0.489 

0.5 0.20 0.9724 27.3 15.5 51.4 29.0 0.0012 0.200 
0.30 0.9441 55.7 34.2 98.4 59.4 0.0026 0.300 
0.40 0.8985 104.5 67.0 164.4 105.3 0.0042 0.399 
0.50 0.8242 192.7 139.2 246.2 185.4 0.0067 0.495 

0.1 0.20 0.9867 12.6 6.8 24.4 13.2 0.0002 0.200 
0.30 0.9730 26.3 15.0 49.6 28.0 0.0004 0.300 
0.40 0.9477 50.9 29.5 68.0 39.7 0.0007 0.400 
0.50 0.9009 98.7 61.4 156.5 98.3 0.0019 0.500 

F o r  c o m p a r i s o n ,  t he  d a t a  of  C i c h o c k i  a n d  H i n s e n  " s )  a re  a lso  given.  

W h e r e a s  o u r  resu l t s  a re  in  qu i t e  g o o d  a g r e e m e n t  w i th  ref. 18 u p  to  v o l u m e  

f r ac t i ons  of  0.30 for  all z va lues  ( w i t h i n  a s t a t i s t i ca l  e r r o r  of  -I-5 % ), we f ind 

m u c h  l a rge r  ( > 1 5 % )  s y s t e m a t i c  d e v i a t i o n s  a t  h i g h e r  c o n c e n t r a t i o n s  

(~0 >/0.40) .  O u r  l o n g - t i m e  d i f fus ion  coeff ic ients  a re  i n c r e a s i n g  d r a m a t i c a l l y  

w i th  i n c r e a s i n g  z. T h i s  c a n  be  u n d e r s t o o d  f r o m  the  p r e s e n c e  o f  the  

s e c o n d a r y  o v e r l a p s  in  the  s t o r e d  pa r t i c l e  c o n f i g u r a t i o n s ,  w h i c h  m e a n s  a 

r e d u c t i o n  of  the  s p a c i n g  of  t o u c h i n g  par t i c les  c o m p a r e d  to  the  t heo re t i c a l  

v a l u e  d = 2R. T h u s ,  the  effect ive pa r t i c l e  r a d i u s  is sma l l e r  t h a n  0 . 5 / J m  and ,  

c o r r e s p o n d i n g l y ,  we h a v e  to  c o n s i d e r  effect ive v o l u m e  f r ac t i ons  which ,  

Table II. Convergence of Long-Time Diffusion Coefficients D ( t - - 5  sec) /D o 
wi th  Decreasing Time Step T 

~, msec ~0 = 0.20 ~0 = 0.30 q~ = 0.40 ~p = 0.50 

10 0.660 0.532 0.406 0.244 
1 0.674 0.532 0.361 0.184 
0.5 0.678 0.499 0.340 0.164 
0.1 0.684 0.503 0.334 0.128 

ref. 18 0.64 0.48 0.29 0.09 
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depending on the number of overlapping spheres N(r) and the distance 
d(T) of the secondary overlaps, can be significantly decreased compared to 
the true values. It is obvious that these smaller effective volume fractions 
yield larger particle mobilities and larger long-time diffusion coefficients 
than expected theoretically. To discuss this fact in more detail, we give a 
simple formula for estimating these reduced effective volume fractions from 
the data given in Table I: 

q~e~- V7 '{ I N -  N(~)] V~. + N(T) V~[ 1 - d(~)/2R] 3 } 

~0[1 - 3N(~) d(T)/ZNR] (3) 

V~ and V,. are the sphere and computing cell volumes, respectively. The 
results are given in the last column of Table I. Apparently, the effective par- 
ticle volume fractions are decreased significantly at higher concentrations 
above 0.30 with increasing 3. This corresponds well to the other results 
given in Table I, and demonstrates that the secondary particle overlaps 
cause a systematic deviation of our long-time particle mobilities toward too 
large values. It should be noted that the diffusion coefficients of Cichocki 
and Hinsen given in Table II were obtained after extrapolation to zero step 
time. ~8) We were not able to find a similar extrapolation formula for our 
data, since the negative and positive errors caused by the overlap correc- 
tion affect D(t) differently at different diffusion times t. A more detailed 
comparison of our results with those of Cichocki and Hinsen will be given 
below. 

2.4. Compar ison of Di f fus ion in T w o  and Three  Dimensions 

Although there are fundamental differences between diffusion in two 
and three dimensions (see next section), it is desirable to compare 
calculated diffusion coefficients at corresponding particle concentrations. 
Since our d =  2 simulations are performed in a layer of thickness 2R, we 
can define a d =  2 volume fraction q~2 which is related with the area fraction 
qL~ of circular disks in a plane by 

q~2 = 2~oA/3 (4) 

It is apparent from Fig. 2 that the maximum volume fraction given by close 
packing of spheres in the layer is q~21"ax~ = n/(3 x/3) =0.6046, to be com- 
pared with q~3ma~=n/(3 ~/2)=0.7405 for d = 3  close packing. We have 
proposed I'1) to compare d = 2  and d =  3 diffusion coefficients at volume 
fractions where the nearest-neighbor distances in the corresponding close- 
packing lattices are equal. This can be visualized in Fig. 2 by keeping the 
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Fig. 2. Lattices for uniform distribution of spheres in d= 2 and d= 3 samples, based on the 
crystalline closed packed structures, respectively. The fat triangles in the d= 2 trigonal lattice 
and the d=3 FCC lattice correspond, the length of one side equals the nearest-neighbor 
spacing. 

sphere centers fixed at their lattice positions as the volume fraction is 
reduced by decreasing the sphere radii. The requirement of equal nearest- 
neighbor distance results in 

~o3 = 35/4(27z)-~/2 ~0~/2 = 1.575q~3/2 (5) 

for rescaling ~02 into a corresponding d =  3 volume fraction ~03. It should 
be noted that the d =  2 layer in Fig. 2a corresponds to the (111 ) plane of 
the face-centered-cubic lattice in Fig. 2b, and the circle over the d =  2 fat 
triangle becomes the origin of the d =  3 lattice cell. The situation becomes 
more  complex for spheres between two hard surfaces having a distance 
d >  2R. In this case, there are several possibilities for close-sphere packings 
leading to hexagonal  or quadrat ic  phases of two or more layers. Compute r  
simulations in such systems are planned which correspond to our current 
diffusion experiments in thin suspension layers. ('~'~2) It should be men- 
tioned that  Murray  and co-workers  (n~ had used a similar procedure to 
compare  their results obtained from digital image processing of thin layers 
of  aqueous suspensions of charged spheres with 3D results. 
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3. RESULTS 

3.1. Simulations in Three Dimensions 

Figure 3 gives our numerical results for the time-dependent self-diffu- 
sion coefficient D,(t) of d =  3 samples with volume fractions in the range of 
0.104).60. The limit of time-independent long-time particle mobility charac- 
terized by the long-time diffusion coefficient D ,  is reached for every sample 
at diffusion times t somewhat above 2 sec. It is quite remarkable that this 
limiting time seems to be unaffected by the particle concentration of the 
sample. 

To compare our data with the results of ref. 18 in some detail, Fig. 4 
presents our d =  3 results for a particle volume fraction of ~o = 0.40 from 
runs with z = 1.0, 0.5, and 0.1 msec, respectively. Also shown are results 
from ref. 18 at the same volume fraction with calculation parameters 
2---0.035, 0.025, and 0.018, respectively (from below), representing a 
numerical measure of the time step of calculation r. From Eqs. (14)-(17), 
(20), and (21) of ref. 18 the corresponding calculation time steps z for our 
simulation parameters (Do, R, N) can be determined easily, giving 0.37, 
0.19, and 0.1/~sec, respectively. Also shown is the curve Cichocki and 
Hinsen had obtained by extrapolation of their data to 2 = 0 (corresponding 
to ~r = 0). As mentioned above, finite z values lead to too large D(t)/Do in 
our case due to secondary particle overlaps, whereas Cichockj and Hinsen 
obtain too small values for finite 2. It is apparent from the comparison that 
our procedure converges at z values more than I000 times larger than that 
of Cichoki and Hinsen, although we have a structural error due to 
secondary overlap which is avoided in ref. 18, where only one particle is 

] J i i I 

0 . 4  ~ .  ( ~ e ' ~  ~ ~ C 0 

0.2  ~"o-o-e~_ c o o ~  c . o . o 

o 0 o o c 

0 9 o ~ ~ 

1 2 3 4 5 6 

t Is3 

Fig. 3. Time-dependent reduced self-diffusion coefficients, determined for d = 3 samples with 
volume fractions ~0=0.104).60 (in steps of 0.05, from above), with calculation period 
r =0.5 msec (open symbols; the lines are guides to the eye). 
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Fig. 4. Time-dependent reduced self-diffusion coefficient, determined with calculation periods 
�9 = 1.0, 0.5, and 0.1 msec (from above), for d = 3  samples with r  (dotted lines). For 
comparison results from ref. 18 are also presented for different values of the calculation 
parameter 2 (see text) (crosses) and for the extrapolation 2 ~,0 (asterisks). 

moved at a time and any move leading to overlap is omitted. This means 
our algorithm is much more efficient on the basis of comparable computer 
time. This was the main reason we could do our calculations on 68030- 
processor computers, even at very high particle concentrations up to 
closest packing. 

In Fig. 5 we present our numerical results for the long-time diffusion 
coefficient DL (asterisks) as a function of the d = 3  volume fraction 
[corrected for secondary particle overlaps; cf. Eq. (3)],  including hydro- 
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Fig. 5. Long-time self-diffusion coefficients from our BD simulations at various concentra- 
tions, including hydrodynamics following ref. 5, with volume fractions corrected for secondary 
overlaps (asterisks), compared with theoretical predictions (dotted line c5~) and light scattering 
experiments (open squarest3~). 
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dynamic interactions by factorization of our numerical data with the short- 
time diffusion coefficients from ref. 4 due to the suggestion of Medina- 
Noyola, tS~ in comparison with experimental results obtained by dynamic 
light scattering (33) (squares). Also given are theoretical predictions for the 
concentration dependence of the reduced longtime self-diffusion coefficient 
DL/Do by Medina-Noyola.(6) Although, there are small systematic differences, 
the agreement is remarkably good in view of the crude assumptions made 
in the simulations. 

Figure 6 shows a comparison of our numerical D/_ values (corrected 
volume fractions, see above), including hydrodynamic interactions (see 
above), with diffusion coefficients which were experimentally obtained by 
forced Rayleigh scattering on samples of dye-labeled spherical polystyrene 
microgels (~5"17~ of diameter ~ 2 0 0 n m ,  in the solvent bitolyl. The 
measurements were done in our group by S. Mrller at samples up to very 
high concentrations. Included is a Mooney fit, tl7) log DL = A / ( 1 - - B t p - l ) ,  
of the experimental results. As in Fig. 5, our numerical data show very 
good agreement with experiment even at higher concentrations, but one 
should be aware of the logarithmic scale of the given results and the 
scattering of the experimental data. It should also be noted that the poly- 
dispersity and the network structure of the spherical microgels may result 
in increased diffusion coefficients in comparison with monodisperse hard 
spheres at high concentrations. This increase may accidentally be of the 
same order as the errors of our simulation, which also increase with 
increasing concentration. 

4.10-9 

lO-g 

i 

10 -10 

10_i I 

C3 ~ 10-12 

10-13 

2 " 1 0  - } `4  ! f I I I I I 
0 0 1  0 2. 0 . 3  0 .4  0 . 5  0 6 0 .7  0 . 8  

Fig. 6. Comparison of long-time self-diffusion coefficients at various volume fractions from 
d=3 BD simulations (open squares) with experimental data from ref. 17 (full circles). 
Numerical results were factorized with D/Do to take into account hydrodynamic interactions 
following ref. 5; volume fractions were corrected for secondary particle overlaps. Also included 
is the Mooney fitting curve from ref. 17 (line). 



Brownian Dynamics Simulations 699 

After we have shown the val idi ty of our  numerical  d =  3 results by 
detai led compar i son  with experiments  (~7'33) and simulations,  (18'34) we 
present  our  studies concerning the d imensional i ty  and concentra t ion  
dependence  of  part icle  mobil i t ies by numerical  s imulat ions of d =  2 and 
d =  3 samples at cor responding  volume fractions in the following section. 

3.2. Comparison of  d = 2  and d = 3  Samples 

Figure 7 shows our results for N(~_), the number of particles with 
hard-sphere  interact ions dur ing one cycle of calculat ion,  for d = 3 and d = 2 
samples with various ~ ranging from 0.1 to 10 msec (see also the discussion 
of Table  I given above) .  All part icle  concentra t ions  have been corrected for 
secondary  part icle overlaps [cf. Eq. (3)]  and  the d = 2  results are p lot ted  
versus the area  fractions ~0A, whereas the d =  3 values are plot ted versus 
volume fractions. I t  should be ment ioned that  we tried to determine the 
interact ion frequency, defined as ex t rapo la t ion  of the p roduc t  of the num- 
ber  of  part icle  overlaps,  o v ( r _  ), and  the number  of cycles per  second, T-  ~, 
as a quant i ty  for r - independent  charac ter iza t ion  of the intensity of  particle 
interactions.  Since we found no convergence down to r = 0.1 msec and we 
were not  able to choose smaller  T due to lack of compute r  power,  we 
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Fig. 7. Number of particles with interactions during one calculation step, N(T_), for simula- 
tion runs of d= 2 and d= 3 samples with various particle concentrations and calculation steps 
r. All concentrations have been corrected for secondary overlaps [Eq. (3)]. The d= 3 results 
(lines with full circles)are plotted versus their volume fractions, ~ ranging from 0.1 to 10 msec 
(from below). The d= 2 results (lines with open squares) are plotted versus the area fractions 
with r ranging from 0.25 to 1 msec (from below). Symbols with dashed lines both correspond 
to r = 0.5 msec. Vertical dashed lines mark volume fraction of d= 3 random closed packing, 
q) ,~,0.61, and the corresponding [Eqs. (4), (5)] area fraction; vertical full lines correspond to 
the particle fractions of crystalline closed packings. 
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decided to present N(z_  ) as characteristic quantity. One can easily imagine 
that N(z_  ) strongly increases with increasing z, in correspondence with the 
increasing distance the particles are moving by free Brownian motion.  
Although the strong dependence of our  data  on z is seen in Fig. 7, all d = 3, 
and, respectively, d = 2  values show a tendency toward 100% interacting 
particles [N(T_)  = 343] at the same particle concentrat ions,  ~03 ~ 0.61 for 
d = 3  and ~0A~0.88 for d = 2 .  These volume fractions should resemble 
closest packed structures, since no particle can be found moving without 
any collision with its nearest neighbors, not even for the smallest values 
of T. For  semiquanti tat ive analysis, four perpendicular  lines are drawn in 
Fig. 7, the full lines representing the crystalline closest packings with F C C  
( d =  3) and trigonal ( d =  2) structure. The dashed line at tp ~0.61 signifies 
the r andom closed packing predicted by many  authors  for d =  3 samples 
and identified with a glass transition, t1'35~ The line at tp ~0.795 marks  the 
corresponding d =  2 area fraction, determined following Eqs. (5) and (4), 
where, however, no glass transit ion is indicated by the N(T) values. To  
summarize  the results of Fig. 7, we find different behavior  considering the 
intensity of interparticle interactions in d = 3 and d = 2 samples. Whereas  in 
d =  3 a closed packed structure with 100% interacting particles is reached 
at a volume fraction far below the closest crystalline F C C  packing which 
could be described as a glass transition with r andom closed packing 
structure, in d =  2 the intensity of interactions is comparab ly  small up to 
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Fig. 8. Concentration dependence of long-time self-diffusion coefficients for two- (crosses, 
asterisks) and three-dimensional samples (open squares). The d= 2 results are plotted versus 
original d--2 volume fractions ~o 2 (asterisks) and versus their corresponding d= 3 particle 
concentrations ~0~ (crosses), which were calculated from Eq. (5) after the principle discussed 
at length in the text. Dotted lines are a guide to the eye to visualize the crossover (see text) 
at tp~0.55. All volume fractions have been corrected for secondary particle overlaps 
[Eq. (3)]. 
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volume fractions close to the trigonal crystalline structure, and no glass 
transition can be found, opposite to the d =  3 results. 

In Fig. 8 we show the concentration dependence of the long-time diffu- 
sion coefficient, DL(~o), for d =  2 and d =  3 samples. The d =  2 results are 
plotted versus the original d =  2 volume fractions ~02 and versus the corre- 
sponding rescaled d =  3 values ~03 [see above, Eqs. (4), (5)]. It should be 
noted that all particle concentrations have been corrected for secondary 
overlaps as above in Figs. 5 and 6. Comparison of the rescaled d =  2 data 
and the d =  3 results concerning the influence of sample dimensionality on 
particle mobility shows smaller diffusion coefficients of the d = 2 samples at 
small concentrations, whereas the opposite is found at very high concentra- 
tions above ~03 ,-, 0.55. These findings could be interpreted as following: 

1. Consider diffusion in the xy  plane. In d =  2 the third degree of 
freedom of motion is missing, which leads to more effective caging 
of the moving particles due to hard-sphere interactions with their 
six in-plane neighbors. Thus we find less particle mobility in d =  2 
samples compared with d =  3, where the in-plane cage can relax 
also by particle motion in the z direction. 

2. At very high concentrations, ~03>0.55, we find larger particle 
mobilities in d =  2 than in d =  3 due to the difference in phase 
behavior of d = 2  and d =  3 samples as mentioned above. At 
~0 ~ 0.61 a d =  3 glass transition exists where all long-time particle 
mobility ceases. In d =  2 no similar random closed packing is 
found, t36) which means some particle mobility should remain until 
the volume fraction of the closed packed crystalline structure is 
reached at ~03 ~ 0.741. 

4. CONCLUSIONS 

We have presented a new very effective algorithm for BD simulation 
of colloidal hard-sphere systems. The long-time self-diffusion coefficients we 
have determined by numerical simulation of the single-particle trajectories 
of d = 3  samples agree well with numerical results of Cichocki and 
Hinsen t~8'34) at not too large volume fractions. Our data also agree with 
various experimental results. Comparing simulations of two- and three- 
dimensional samples at corresponding particle volume fractions, we find 
differences in the ,intensity of particle interactions, N(r_ ), and the concen- 
tration-dependent long-time self-diffusion coefficients. At small concentra- 
tions the caging of nearest neighbors seems to be more effective in d =  2 
than in d =  3, which leads to a smaller particle mobility in d =  2, whereas 
at very large volume fractions, ~0 > 0.55, close to the d =  3 glass transition 
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a crossover is found and the mobility in d =  3 decreases dramatically. The 
fact that particles in d =  2 show a higher mobility (compared to d =  3) at 
very large volume fractions tp 3 above the d =  3 glass transition seems to 
indicate that no glass transition is found in d = 2  hard-sphere systems, 
which corresponds to the results given in ref. 36. Nevertheless, there might 
be other possibilities of interpretation, as, for example, the theoretical lack 
of any freezing effects in d =  2 beyond ~03 = 0.741, whereas such freezing 
effects, which lead to a dramatic decrease of the particle mobility, are 
generally predicted in d =  3 samples at volume fractions beyond the glass 
transition. ~1~ For clarification, the equilibrium structures of our BD 
simulation results have to be investigated, which will be a matter for a 
future publication. 

The results we have given are only averaged single-particle mobilities 
or self-diffusion coefficients. The main reason for this is that our accom- 
panying studies of digital image particle tracking were restricted to diffu- 
sion of labeled tracer particles at higher concentrations, t~l) However, recent 
advances in preparation of optical core shell systems ~37'38) will allow 
experimental studies where the core volume fraction is only a few percent 
whereas the shell provides for high concentrations up to random or crys- 
talline close packings. The situation is then similar to that in charged 
colloid systems where the "shell" is given by electrostatic repulsion. ~39) 
Thus, the dynamic structure can be investigated in real space by light 
microscopy if the shell is made invisible by index matching with the solvent 
and has a thickness ( > 300 nm) that allows for optical resolution of the dis- 
tance of neighboring cores in concentrated suspensions. The efficient algo- 
rithm presented in this paper should allow for most computer simulations 
desirable for analyzing these experiments by using a work station which is 
about 100 times faster than a good PC. 
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